Cherry Pests and Diseases

Rest Breaking Treatments for Sweet Cherries

Joe Grant
Farm Advisor
UC Cooperative Extension
San Joaquin County

National Cherry Growers of Australia
Annual Conference
July, 2004
This calendar lists typical timings of practices conducted in a sweet cherry orchard. Specific needs will determine if the practice is necessary.
Pocket gophers
Bacterial canker & blossom blast
Phytophthora root & crown rot
Cherry Buckskin Disease (Western X Disease)
High-worked Mahaleb tree
Mountain Leafhopper

Cherry (Flor’s) Leafhopper
Cherry Stem Pitting Disease
Blossom & fruit rots

Brown rot blossom blight and fruit rot

Botrytis blossom blight

Rhizopus fruit rot
Powdery Mildew, *Podosphaera clandestina*
Green Fruitworm, *Orthosia hibisci*
Fruittree Leafroller larvae & adult
Obliquebanded Leafroller larvae & adult
Obliquebanded leafroller

Fruittree leafroller
Webspinning spider mites
Occasional Pests

- Cherry slug
- Scales
- European Earwig
- Birds
- Wood borers
Cherry Viruses
- Prunus Necrotic Ringspot Virus
- Cherry Raspleaf
- Cherry Necrotic Rusty Mottle Virus

Nematodes
- Lesion Nematode (*P. vulnus*)
- Ring Nematode
Abiotic Disorders

Suture, doubles, spurs

Cherry crinkle
Rest Breaking Treatments for Sweet Cherries
Dormancy/Rest

✓ Lack of chilling causes

- Straggly leafing & bloom
- Weak bloom, abnormal flowers
- Bud death
- Uneven fruit growth & maturity
Average Chilling Accumulation
Avg. of available San Joaquin County stations

HOURS < 45F

DATE

0 200 400 600 800 1000 1200 1400 1600

11/15 12/15 1/15 2/15 3/15

95/96 97/98 98/99 99/00 00/01 01/02 02/03 03/04
Approximate Chilling Requirements of Selected Fruit & Nut Crops

- Fig
- Almond
- Apricot
- Peach
- Cherry
- Walnut
- Plum
- Pear
- Apple
- Prune

Hours < 45 °F
Chilling requirement

- Varies:
 - Crop
 - Variety
 - Rootstock
 - Among buds on a tree

- California cherries: 850 hrs.
Stages of dormancy

- **Summer**: Paradormancy
- **Fall**: Endodormancy
- **Winter**: Ecodormancy
- **Spring**: Paradormancy

Environmental changes
- **Short days**
- **Low temperatures**
- **Warm temperatures**

Biological changes
- **Hormones from terminal buds & leaves**
- **Dehydrins**
- **Bound water**
- **Membrane changes**
- **Low metabolism**
- **Hormones**
- **Free water**
Chilling Models

✓ Hours $\leq 45 \, ^\circ F$
✓ “Utah” Chill Units
✓ Dynamic Model
Chilling Models

✓ Hours $\leq 45 \, ^\circ F (7 \, ^\circ C)$
 - Less than 45 °F (1934)
 - Less than or equal to 45 °F (1950)
“Utah” Chill Units Model,
Richardson, et al, 1974

°F

CU

Most effective

- 2.0
- 1.0
- 0.5
0
0.5
1.0
0.5
0
Dynamic Model
Fishman, et al, 1987

Heat
Cold

“Chilling Portion”
Rest breaking materials

- ✓ Oil
- ✓ DORMEX®
- ✓ CAN 17 + Surfactant
- ✓ Calcium nitrate + Erger G®
Rest breaking treatments

✓ Response variable, depending on:

- Dose
- Time of application
- Conditions at/after application
- Bud development
- Extent of chilling deficit
Rest breaking treatments

- **DORMEX®** generally more effective than CAN 17
- More consistent response when time sprays using CP
 - Dormex: 42-50 CP
 - CAN 17: 54-58 CP
- Easier to compact than advance bloom
- Effect on fruit ripening less than bloom
- Surfactants vary in effectiveness and risk of phytotoxicity
CAN 17 + 2% Entry

Bing, 2004
CAN 17 + Entry

Dormex + Agri-dex

Bing, G & S, 2004 50 CP